Arrangement of hyperplanes I: Rational functions and Jeffrey-Kirwan residue

نویسندگان

  • Michel Brion
  • Michèle Vergne
چکیده

Consider the space R∆ of rational functions of r variables with poles on an arrangement of hyperplanes ∆. It is important to study the decomposition of the space R∆ under the action of the ring of differential operators with constant coefficients. In the one variable case, a rational function of z with poles at most on z = 0 is written uniquely as φ(z) = Princ(φ)(z)+ψ(z) where Princ(φ)(z) = ∑ n<0 anz n is the principal part of φ(z) and ψ(z) = ∑ n≥0 anz n is the polynomial part of φ(z). Remark that the space

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 Residues formulae for volumes and Ehrhart polynomials of convex polytopes . Welleda Baldoni - Silva and Michèle Vergne January 2001

These notes on volumes and Ehrhart polynomials of convex polytopes are afterwards thoughts on lectures already delivered in Roma, by the second author in December 1999. The subject of these lectures was to explain Jeffrey-Kirwan residue formula for volumes of convex polytopes [J-K] and the residue formula for Ehrhart polynomials of rational polytopes [B-V 1, 2]. The main concept used in these f...

متن کامل

Nested Sets and Jeffrey Kirwan Cycles

In this paper we discuss some new notions in the theory of hyperplane arrangements. The paper grew out of our plan to give an improved and simplified version of some of the results of Szenes Vergne [6]. We start from a complex vector space U of finite dimension r and a finite central hyperplane arrangement in U∗, given by a finite set ∆ ⊂ U of linear equations. From these data one constructs th...

متن کامل

Toric Reduction and a Conjecture of Batyrev and Materov András Szenes and Michèle Vergne

This paper grew out of an attempt to understand a conjecture formulated by Batyrev and Materov in [2]. The conjecture has its origin in Physics and is based on a work by Morrison and Plesser [11]. According to the philosophy of mirror symmetry, to every manifold in a certain class one can associate a dual manifold, the so-called mirror, so that the intersection numbers of the moduli spaces of h...

متن کامل

The residue formula and the Tolman-Weitsman theorem

We give a simple direct proof (for the case of Hamiltonian circle actions with isolated fixed points) that Tolman and Weitsman’s description of the kernel of the Kirwan map in [9] (in other words the sum of those equivariant cohomology classes vanishing on one side of a collection of hyperplanes) is equivalent to the characterization of this kernel given by the residue theorem [6].

متن کامل

Computation of Jeffrey-Kirwan residue using Gröbner basis

The Jeffrey-Kirwan residue is a powerful tool for computation of intersection numbers or volume of symplectic quotients. In this article, we give an algorithm to compute it using Gröbner bases. Our result is parallel to that of [2] for Grothendieck residues.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999